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We demonstrate a compositionally induced superconductor-to-semiconductor transition in the system 
(Pb,,,,Cu,,,)Sr&Ca, -xYr)Cu207-8. Superconducting behavior is observed over the composition range 
0.1 5 x 5 0.6. Samples with 0.1 5 x 5 0.3 are multiphasic, but the superconducting transition 
temperature is a maximum (55 K) over this range of compositions. The sample having x = 0.5 gives 
rise to an acceptable phase purity, a superconducting transition temperature of 45 K, and the maximum 
superconducting (Meissner) volume fraction (20.2%). A superconductor-to-semiconductor transition 
occurs at x =’ 0.7. 8 1591 Academic Press. Inc. 

1. introduction 

Recently, a new family of lead-based 
cuprate superconductors, (Pb,,5M,,,) Sr, 
(Ca,-,Y,)Cu,O,-s [M = Sr (1) and Ca (2, 
3)] has been discovered with a maximum T, 
of 80 K. The parent compound is iso- 
structural with the thallium-based 1212 
phase, e.g., (T1,Pb)Sr,(Ca,Y)Cu,07_, (4), 
but contains (Pb,M)O layers rather than 
(Tl,Pb)O layers. Its structure is derived 
from the general formulation (ACuO, -,), 
(AO), , and consists of double pyramidal 
copper layers (m = 2) intergrown with dou- 
ble rock-salt type layers (n = 2). Moreover, 
the presence of the 6s’ lone pair on Pb2+ in 
this new system results in the stabilization 
of oxygen-deficient layers (SrO,,,,) sur- 

rounded by the (PbO,sM,,sO) layers. There- 
fore, we felt it appropriate to explore an- 
other possible candidate for substitution, 
namely Cu2 + , in the Pb-based 1212 com- 
pound. However, Subramanian et al. (5) 
and Lee et al. (6) have previously reported 
nonsuperconducting phases of (Pb,,,Cu& 
WC%. &d%~ and (Pbo.&uo.29Pr2 
(Ca,,27Yo,73)Cu207, respectively, in the 
(Pb,Cu)-based 1212 material. Subsequently, 
Ono et al. (7) observed superconductivity 
at 17 K in a liquid nitrogen-quenched bulk 
sample of (Pbo.63C~.,,)Sr2(Ca.~~yo.~~) 

Cu,O, , and Bush et al. (8) found supercon- 
ductivity at 40 K in a single crystal having a 
chemical composition (Pb0,7SCu0,25)Sr2 
(Ca,,46Yo.,)Cu20,. Soon after, Maeda et al. 
(9) pointed out that a sample having a nomi- 
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nal chemical composition of (Pb,,Cu&Sr, 
(C~.6Y0,,)Cu,0,_, exhibits an onset super- 
conductivity (as measured by resistivity) at 
52 K when the material was prepared in an 
oxidizing atmosphere and was subsequently 
quenched into liquid nitrogen. Tang et al. 
(10) have also stated that a sample of nomi- 
nal composition (Pbo,sC~,s)Sr2(C~,~Y~.~) 
Cu,O,, becomes superconducting below 67 
K when the material is prepared at high pres- 
sure of oxygen (100 - 200 bar). 

Here, we demonstrate a compositionally 
induced superconductor-to-semiconductor 
transition in this new series (Pb,,,,Cu,,&Sr2 
(Ca, -xY,)Cu,Q,-, . 

2. Experimental 

In this work, we have attempted to main- 
tain the Pb concentration at a constant 
value, and have varied the Ca/Y ratio. High- 
purity powders of SrCO,, CaCO,, Y,O,, 
and CuO were weighed in appropriate pro- 
portions to form the nominal compositions 
Sr,(Ca,_,Y,)Cu,,,,O, with x = 0.1,0.2,0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The mixed 
powders were calcined at 970°C for 12 hr in 
air. The precursor powders were then mixed 
with PbO to form the compositions of 
(Pb,,,Cu&Sr,(Ca, _,Y,)CU,O,_~ . The re- 
sulting mixtures were ground and pressed 
into a pellet (10 mm in diameter and 3 mm 
in thickness) under a pressure of 5 ton/cm’. 
The pellets were sealed in gold foil (to pre- 
vent the loss of lead at elevated tempera- 
tures) and were then sintered at 970°C for 3 
h in flowing oxygen. After this time, the 
furnace was cooled to room temperature at 
a rate of TClmin. Enclosure of pellets in 
gold foil is absolutely necessary for the syn- 
thesis of superconducting materials. 

X-ray diffraction (XRD) analyses were 
performed using a Philips-PW1710 X-ray 
diffractometer with CL&~ radiation. Lattice 
parameters were determined by a least- 
squares-refinement program from XRD pat- 
terns. Chemical compositions of the speci- 

mens were examined by energy dispersive 
X-ray spectrometry (EDS) from a JEM- 
200CX electron microscope operating at 200 
kV. Molybdenum specimen grids were used 
and background spectra were obtained to 
ensure that no copper signals were detected 
from the sample-free area. 

Bar-shaped samples (1.5 x 2 x 10 mm) 
were cut from the sintered pellets for stan- 
dard four point probe electrical resistivity 
measurements. The electrical contacts to 
the sample were made by fine copper wires 
with a conductive silver paint; the applied 
current was 1 mA. The temperature was 
recorded using a calibrated silicon diode 
sensor located close to the sample. Magneti- 
zation data were obtained using a supercon- 
ducting quantum interference device 
(SQUID) magnetometer (Quantum Design). 

3. Results and Discussion 

In Fig. 1 we show the powder XRD pat- 
terns of the series (Pb,,,Cu,,,,)Sr,(Ca, _,Y,) 
Cu,O,_, samples with nominal x values of 
0.2 - 0.8. At x = 0.2 sample, the majority 
phase (marked by x ) can be indexed on the 
basis of a hexagonal unit cell Ill] with lattice 
constants a = 10.11 A and c = 7.11 A, and 
the minority phase (marked by 0) can be 
fitted by a tetragonal unit cell with a - 3.8 
A and c - 11.9 A, corresponding to the so- 
called 1212 phase (Z-10). We find that this 
hexagonal phase is semiconducting. An in- 
crease in nominal yttrium concentration in 
the series (Pbo.7~Cua,,)Sr,(Ca, _,Y,)Cu, 
O,_, decreases the amount of the hexag- 
onal phase and increases the concentration 
of the tetragonal phase. From the peak in- 
tensity ratio, [Z(2OO)/Z(200) + I’( 1 lo)], 
where Z(200) and Z’(ll0) are derived from 
the intensity of the tetragonal phase at 20 
= 47.5” and the hexagonal phase at 20 = 
17.5”, respectively, we obtain a semiquanti- 
tative estimate of the relative amount of the 
1212 phase for various yttrium to calcium 
ratios, as shown in Fig. 4a. 
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FIG. 1. Powder XRD patterns of the series (Pbo,,sC~,2s)Sr2(Ca,-xYx)Cu20,-S samples with nominal 
x values of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. 

Moreover, we observe a contraction in 
the c lattice parameter for the tetragonal 
phase from 11.8758(X) A for x = 0.3 to 
11.8337(9) 8, for x = 0.8, and an expansion 
in the a lattice parameter from 3.8159(4) A 
for-x = 0.3 to 3.8228(2) A for-x = 0.8. The 
reduction in the c lattice parameter probably 
arises from substitution of the smaller Y3+ 

ion (0.93 A), as compared with Ca2+ ion 
(0.99 A). The expansion in the a lattice pa- 
rameter can be attributed to a decrease in 
the average copper oxidation state, leading 
to longer Cu-0 distances within the copper 
oxygen sheets. A similar effect has been 
observed in Bi,Sr2(Cal-xYx)Cu208+6 (22) 
and U.10.5Pbo.5)Sr2(Ca, -xY,)Cu207-8 (4. 
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FIG. 2. Temperature dependence of the normalized 
resistance of the (Pbo,,5Cu~,,,)Srz(Ca,-xYx)Cu20,-S 
samples with nominal x values of 0.2,0.3,0.4,0.5,0.6, 
and 0.7. 

The elemental compositions of 25 individual 
microcrystals were determined on samples 
having nominal composition (Pb,,,,Cu,,,J 
Sr,(Ca,,sY,,s)Cu,O,-s. From these studies, 
the majority phase in the sample was de- 
termined to be [P~~.~~(I,CUO.Z~IS~~.YY(~) 

~~ao.4Y(~~~0.5*~*)1~~207-s~ 

In Fig. 2 we show the temperature depen- 
dence of the normalized resistance of the 
(Pbo.7~Cuo,,5)Sr,(Ca, -xY,)Cu207-8 samples 
with nominal x values of 0.2 - 0.7. Although 
the x = 0.2 sample appears to exhibit semi- 
conducting behavior in its normal state, it 
nevertheless has the highest superconduct- 
ing transition temperature of the entire se- 
ries, with Tc(onsetl = 60 K, Tc(midpoint) = 54 K, 
and Tcgeroj = 42 K. Samples with nominal 
compositions in the region of 0.3 5 x I 
0.6 exhibit metallic behavior in their normal 
state and a decrease in Tc(midpoint) from 52 to 
32 K. Samples with x I 0.7 are semiconduct- 
ing. In Fig. 4b we show the variation in T, 
with x in (Pb,.,,Cu,.,,)Sr2(Ca, -xYx)Cu207-6. 

In Fig. 3 we show the temperature depen- 
dence of the low field magnetization (5 Oe, 
field-cooled) of the powder samples having 
nominal compositions x = 0.1 - 0.6 in 
(Pb,,7sCu,,,,)Sr,(Ca, -xYx)Cu207-6. The on- 
set of diamagnetism appears at a tempera- 
ture of 55 K for samples x = 0.1, 0.2, and 
0.3. However, forx 2 0.3, the onset diamag- 
netic signal moves to low temperatures as x 
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FIG. 3. Temperature dependence of the low field magnetization (5 Oe, field-cooled) of the powder 
samples having nominal compositions x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 in (Pb0,7sCue2s)Sr2(Ca1-, 
YxKu*07-6~ 
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FIG. 4. (a) Peak intensity ratio [Z(200)/1(200) + I’(1 IO)], (b) characteristic superconducting properties 
from the resistance curves, (c)onset diamagnetism, and(d) superconducting(Meissner) volume fraction 
for the entire series, (Pbo,nCuo,u)Sr2(Ca,-.Y,)Cu~0,~~. In (b), the error bars in T, represent the limiting 

increases (Fig. 4~). From the magnetization 
data we estimate the superconducting 
(Meissner) volume fractions; the maximum 
vaiue, 20.2% of - 1/4~ at 5 K, is found for 
the x = 0.5 sample (Fig. 4d). This result 
reveals that bulk superconductivity is found 
in the x = 0.5 sample. 

In Fig. 4 we summarize (a) the peak inten- 
sity ratio [1(200)/1(200) + I’(1 lo)], (b) the 
characteristic superconducting properties 
from the resistivity curves, (c) the onset dia- 
magnetism, and (d) the superconducting 
(Meissner) volume fraction for the entire se- 

ries, @‘hd%2~Pr2(CaI -xYx)Cu207-s. 
From the peak intensity ratio [Z(2OO)/Z(200) 
+ I’( 1 lo)] (Fig. 4a), we see that for samples 
with x 2 0.5 the 1212 tetragonal phase is, by 
far, the majority phase. Based on these data, 
and the characteristic superconducting 
properties (Figs. 4b and 4c), one can pro- 
pose that a higher (nominal) calcium content 
in the Pb-based 1212 compound results in a 
higher superconducting transition tempera- 
ture. It seems likely that the substitution of 
Y3+ for Ca2’ in the system (Pb0,75Cu,,,)Sr2 
(C~,-,Y,)CU,O,-~ decreases the hole con- 
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centration in the CuO, sheets, probably via 
the removal of holes from the o*z-: orbital 
(13). The experimental support for this view 
derives from the observation of an increase 
in the a lattice parameter with yttrium con- 
centration. When x 2 0.7, a transition to 
semiconducting behavior is observed. The 
potential variability of the Y/Ca ratio may 
be one reason for the apparent disparity in 
results from different laboratorities (5-10). 
Once again, the hole carrier density appears 
to play an important role in determining su- 
perconductivity. 

The composition-induced change in elec- 
tronic properties of the title series is reminis- 
cent of those observed in the system 
(Tb.,Pbo.s)Sr2(CaI-xYx)Cu20,-s (4. Here 
the partial substitution of Y3+ into Ca2’ sites 
results in a decrease in hole concentration 
and superconductivity with a maximum T, 
(110 K) for x = 0.2. The 
(Tb.,Pb0.#r2(Ca, -XYX)Cu20, -6 system has 
a complete homogeneity range between 
Ca2+ and Y3+ substitutions. In contrast, the 
present study suggests that the 
(Pb,,7sCu,.25)Sr2(Ca1 -xY,)Cu2%~ system 
will only tolerate ca. 50% substitution of 
Ca2+ into the Y3+ sites. This situation is 
reminiscent of that in YBa2Cu306,2 [with one 
Cu-0 chain corresponding to the (Pb,Cu)O 
layer in the 1212 system] and YBa,Cu,O, 
[with two Cu-0 chains corresponding to the 
(Pb,Cu)O layer in the 1212 system]; in these 
systems, one finds a maximum solubility 
range of Ca substitution into the Y sites of 
ca. 25% (14) and 10% (15), respectively. In 
general, the Bi- and Tl-based superconduc- 
tors possess the Cu-0 sheets which are 
nearly planar, compared with the buckled 
Cu-0 planes in Y-123 superconductor. This 
would lead one to propose that in the Bi- 
22 12 structure [for example Bi,Sr,Y Cu20g + s 
(12)] and in the Tl-1212 structure, [for exam- 
ple (Tb,,Pb,,,)Sr2YCuz0,-, (41 the Y3+ 
layer can accommodate more easily the 
larger Ca2+ ion, as compared with the Pb- 
1212 systems [for example (Pbo.,sCuo.2J 

Sr,YCu,O, _ J . Interestingly, the multipha- 
sic samples with 0.1 5 x 5 0.3 have the 
largest T, , even though the volume fraction 
of superconductor drops rapidly with in- 
creasing (nominal) calcium content. It may 
be possible for the (low volume fraction) 
superconducting phase to accumulate a high 
concentration of calcium within the crys- 
tallites . 

In summary, we have demonstrated the 
compositionally induced superconductor- 
to-semiconductor transition in (PbO,,,Cu,,,,) 
Sr,(Ca, -XY,)Cu207- a. Here the Y /Ca ratio 
appears to play an important role in de- 
termining the hole concentration and the su- 
perconductivity in this new lead-based cu- 
prate material. 
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